Gender Identification in Human Gait Using Neural Network

نویسنده

  • Richa Shukla
چکیده

Biometrics is an advanced way of person recognition as it establishes more direct and explicit link with humans than passwords, since biometrics use measurable physiological and behavioural features of a person. In this paper gender recognition from human gait in image sequence have been successfully investigated. Silhouette of 15 males and 15 females from the database collected from CASIR site have been extracted. The computer vision based gender classification is then carried out on the basis of standard deviation, centre of mass and height from head to toe using Feed Forward Back Propagation Network with TRAINLM as training functions, LEARNGD as adaptation learning function and MSEREG as performance function. Experimental results demonstrate that the present gender recognition system achieve recognition performance of 93.4%, 94.6%, and 94.7% with 2 layers/20 neurons, 3 layers/30 neurons and 4 layers/30 neurons respectively. When the performance function is replaced with SSE the recognition performance is increased by 2%, 2.4% and 3% respectively for 2 layers/20 neurons, 3 layers/30 neurons and 4 layers/30 neurons.The above study indicates that Gait based gender recognition is one of the best reliable biometric technology that can be used to monitor people without their cooperation. Controlled environments such as banks, military installations and even airports need to quickly detect threats and provide differing levels of access to different user groups. Index term— Gender Recognition, Gait, Silhouette, Feature extraction, Neural network

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

A Gray-Box Neural Network Model of Parkinson’s Disease Using Gait Signal

In this study, we focused on the gait of Parkinson’s disease (PD) and presented a gray box model for it. We tried to present a model for basal ganglia structure in order to generate stride time interval signal in model output for healthy and PD states. Because of feedback role of dopamine neurotransmitter in basal ganglia, this part is modelled by “Elman Network”, which is a neural network stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012